在很久很久以前我寫了一篇文章:如何分析前、後測: 進步分數(Analysis of Pre-test Post-test: Gain scores),利用進步分數 (gain scores,亦有人稱simple change model) 來作分析只是一種分析前、後測的方法而已。
另一種分析前、後測的方法則是 residualized change score (中文有人翻:殘餘改變分數),聽起來很 fancy 的名字,其實觀念很簡單,就是將 pre-test 的成績當作是共變數 (covariate) 放到你的方程式裡面。如果你本來是想作 ANOVA ,但想要用這種模式來作,那就會變成 ANCOVA (analysis of covariance),把pre-test 當作是共變數即可。如果原本是想作迴歸分析 (regression),那迴歸的公式會如下:
Post-test score = b0 + b1 * Pre-test score + b2 * 其它變量
那這兩種模式有什麼不一樣呢?有的,這兩種方式問的問題不一樣。
如果是 simple change model,那你問的問題是:不同的兩組人之間是否在某件事的經驗上有不同程度的改變。換言之,你想要測試:兩組人之間,平均經驗的改變是否存在差異。
如果是 residualized change model,那你問的問題是:當控制了一開始的經驗之後,在第一組的人是否比第二組的人改變更多。
當然,有時候也有一些現實考量。統計學家指出:如果是 observational study,應該不要用 ANCOVA 或 residualized change model,而是用 simple change model。因為一開始的起點可能因為其它沒觀測的變數 (unobserved variables) 而影響。
如果是隨機分組並在 intervention 前作了 pre-test,這時候用 residualized change score 比較合適。
這裡只是簡單地介紹一下,至於詳細的內容與其它分析方式,有不少專書都涉及這方面,請大家自行翻閱。如有不足或疏漏,還請大家幫忙補充。
延伸閱讀:
Statistics: Gain scores vs. residualized gain scores http://wiki.math.yorku.ca/index.php/Statistics:_Gain_scores_vs._residualized_gain_scores標籤: 統計分析